Developing and Applying Next-Generation Watershed Models Using OMS

L. Ahuja, J. Ascough, O. David, T. Green ARS, Agricultural Systems Research Unit F. Geter, K. Rojas NRCS-Information Technology center Fort Collins, CO

Object Modeling System (OMS)

Initial Goal:

A computer framework and a library of modules that facilitates the assembly of a modular modeling package, specific to a region, problem, data constraints, or scale of application

Now: being extended as an application and delivery platform

Developed in collaboration with:

NRCS, USGS, Colorado State University,

Friedrich-Schiller University, Jena, Germany ++

Advantages of OMS

- Supports building of new models and decision tools from a library of reusable components.
- Solution State State
- Improves code quality. Easier to follow by other modelers and pass on to the next generation.
- * Makes long-term maintenance and update of models easier and less costly.
- Eliminates duplication of work by modelers. The library of modules serves as a reference and a coordination mechanism for future research and model improvements.

Advantages of OMS

- Streamlines model building and applications.
 Reduces IT integration challenges for researchers.
- Enhances deployment of new tools by action agencies (NRCS) with established databases.

System Components

OMS Principal Architecture

Component-Based Modeling Example

Science Components

Cloud Services Innovation Platform (CSIP) for Remote Applications of Models

- Implement Modeling Infrastructure that is: □ Cost effective (→ Cloud)
 - Highly interoperable
- □ Component-based (→ OMS3)
- Computational scalable
- □ Scalable for data (→NoSQL)
- Prototype Selected Models Via CSIP
 RUSLE2, AgES-W, ...

The OMS Greatly Facilitates the Development and Use of Models and Conservation Tools by Action Agencies

A Next-Generation, Process-Based AgES Model for Delivering Precision Conservation at Landscape and Watershed Scales

- 130+ components selected from J2000, SWAT, WEPP, RZWQM, and other models
- ✓ RUSLE/MUSLE/WEPP erosion
- Updated water & N Dynamics for soil/groundwater/stream
- Land use/tillage management
- ✓ Tile drainage
- ✓ Crop production, economics!

AgES Watershed Model

Hydrologic Response Units in AgES

This processoriented classification of catchments does not lose any important information

Combined with a topological routing scheme, vertical and lateral processes can be modeled fully distributed by HRUs

AgES Compared to SWAT Mode

- The semi-distributed SWAT concept averages HRU information within a subwatershed
- Important processes, e.g., lateral water /nutrient transport, and specific management and conservation effects cannot be simulated for individual HRUs
 - The fully distributed AgES Watershed Model contains updated state-of-the-science code and allows distributed simulation of important processes by HRUs

AgES Hydrological and Water Quality Modeling - Cedar Creek Watershed, IN

- Cedar Creek Watershed (CCW), Indiana
 - Basin area: 707 km²
 - Avg. precip: 900 mm (35")
 - 76% of watershed agricultural, 21% forest, 3% urban
- GIS Inputs:
 - 30 m DEM (USGS)
 - STATSGO and SSURGO soils (NRCS)
 - Land use (NASS 2001)

HRU Delineation

Flow Topology

AgES Evaluation

AgES Auxiliary Tools

AgES GUI (NASA WorldWindtm)

Natural Resource Model Visualizer (NRMV) Tool

ArcGIS 10 Watershed Delineation Tool

AgES Future Research (2011-2015)

Objective 1: Further develop and apply AgES-W to evaluate the long-term effects of management on water quantity/quality and production in Colorado and the Midwest

Objective 2: Evaluate effects of spatially targeted conservation effects on water quantity/quality;

Objective 3: Evaluate the effects of projected climate change on water use, water quality, and production; develop potential adaptations

GPFARM-Range Functions

Forage Crop Growth

Simulating biomass production of cool season grasses, warm season grasses, legumes, shrub, and forbs with animal grazing.

Animal Production

Simulating animal weight gain/loss.

Hydrology

Crop ET, soil water, runoff, and seepage.

Carbon-Nitrogen Cycling

Climate Change

CO₂ impacts on forage growth, response of crop and CN to temperature and rainfall.

GPFARM-Range to Manage Herd size and Grazing Intensity on a Landscape

F 15

F 8

Event Tab

MUId	Month	Day	Year	eventType
-99	1	1	1982	start
F11	5	4	1982	herdOn
F11	10	20	1982	herdOff
F15	3	1	1983	herdOn
F15	11	15	1983	herdOff
F8	5	10	1984	herdOn
F8	10	31	1984	herdOff
F12	6	2	1985	herdOn
F12	10	25	1985	herdOff
-99	12	31	1985	stop

F 12

Fq

F 13

Can simulate 10 paddocks and rotational grazing

F 11

F 18

F 10

RZWQM calculated annual nitrate reduction (kg N/ha) in tile water by "Controlled Drainage" (left) and "cover crop" (right) in the U.S. Midwest- Regional scale

SUMMARY

- OMS-based AgES and GPFARM-Range represent next generation models that can be customized to deliver system-based, site-specific precision conservation.
- Identify/deliver spatially targeted conservation.
- Allow fast remote applications via smart phones and 'CLOUD COMPUTING.'
- Provide uncertainties and economic risk associated with conservation effects.
- Allow quick updates with improved model components and new management options, contributed by experts world-wide.
- Use common quality data and analysis tools.

Thanks Very Much for Your Attention!

We Seek Your Thoughts!